Skip to main content
Log in

Alterstraumatologie

Multimodale Delirprävention und Verwendung von Augmentationstechniken

Traumatology in the elderly

Multimodal prevention of delirium and use of augmentation techniques

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Laut aktueller Datenlage sind unfallchirurgische Patienten ab einem Alter von 65 Jahren im Rahmen der stationären Behandlung in 20–80 % vom Krankheitsbild Delir betroffen. Die medizinischen Folgen sind oftmals dramatisch und beinhalten eine bis zu 20-fach erhöhte Letalität. Gleichzeitig entsteht ein erheblicher ökonomischer Aufwand.

Am Universitätsklinikum Münster wurde ein multimodales und interdisziplinäres Konzept zu Delirprävention und -management entwickelt: Alle Patienten über 65 Jahre werden von einem Delirpräventionsteam gescreent und bei bestehendem Delirrisiko durch die Mitarbeiter des Teams betreut. Zudem wurde ein interdisziplinäres Management beim Auftreten deliranter Symptome entwickelt. Im Rahmen von Studien konnte die Delirrate durch diese multimodalen Konzepte deutlich gesenkt und somit die Qualität der medizinischen Versorgung erhöht werden.

Die eingeschränkte Knochenqualität sowie einliegende Implantate erschweren zusätzlich das operative Vorgehen bei Frakturen im hohen Alter. Verhindert werden müssen insbesondere ein Ausbrechen des verwendeten Implantats sowie ein sekundärer Repositionsverlust nach Osteosynthese. Durch das Ummanteln der Implantate mit Knochenzement kann die Kontaktfläche zwischen Knochen und Implantat vergrößert und somit die Stabilität verbessert werden. Je nach Lokalisation der Fraktur kann eine zusätzliche intraoperative 3‑D-Bildgebung erforderlich sein.

In biomechanischen Untersuchungen konnten wir auch für die osteoporotische, distale Femurfraktur eine Überlegenheit der Osteosynthese mit Zementaugmentation nachweisen.

Die Implantataugmentation mittels Knochenzement hilft Komplikationen bei Frakturen im hohen Alter zu verhindern, erfordert jedoch besondere Implantate und technische Fertigkeiten sowie die Beachtung einiger Sicherheitsaspekte.

Abstract

Recent data show that 20–80% of surgery patients are affected by delirium during inpatient clinical treatment. The medical consequences are often dramatic and include a 20 times higher mortality and treatment expenses of the medical unit increase considerably. At the University Hospital of Münster a multimodal and interdisciplinary concept for prevention and management of delirium was developed: all patients older than 65 years admitted for surgery are screened by a specialized team for the risk of developing delirium and treated by members of the team if there is a risk of delirium. Studies proved that by this multimodal approach the incidence of delirium was lowered and therefore the quality of medical care improved.

When surgical treatment of fractures in the elderly is required, limited bone quality as well as pre-existing implants can complicate the procedure. Secondary loss of reduction after osteosynthesis and avulsion of the implant in particular must be prevented. Augmentation of the osteosynthetic implant with bone cement can increase the bone-implant interface and therefore stability can be improved. Additional intraoperative 3D imaging can be necessary depending on the localization of the fracture. In biomechanical studies we could prove greater stability in the osteosynthesis of osteoporotic fractures of the distal femur when using additional bone cement; therefore, the use of bone cement is an important tool, which helps to prevent complications in the surgical treatment of fractures in the elderly. Nevertheless, special implants and technical skills are required and some safety aspects should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a
Abb. 1b (Fortsetzung)
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Weyerer S, Robert Koch Institut, Statistisches Bundesamt (2005) Heft 28: Altersdemenz

    Google Scholar 

  2. Hajek A, Brettschneider C, Lühmann D, Eisele M, Mamone S, Wiese B et al (2016) Effect of visual impairment on physical and cognitive function in old age: findings of a population-based prospective cohort study in Germany. J Am Geriatr Soc. doi:10.1111/jgs.14458

    PubMed  Google Scholar 

  3. Wolfsgruber S, Kleineidam L, Wagner M, Mösch E, Bickel H, Lühmann D et al (2016) Differential risk of incident alzheimer’s disease dementia in stable versus unstable patterns of subjective cognitive decline. J Alzheimers Dis 54(3):1135–1146. doi:10.3233/JAD-160407

    Article  PubMed  Google Scholar 

  4. Bickel H (2005) Epidemiologie und Gesundheitsökonomie. In: Wallesch CW, Förstl H (Hrsg) Demenzen. Referenzreihe Neurologie. Thieme, Stuttgart, S 1–15

    Google Scholar 

  5. Fong TG, Davis D, Growdon ME, Albuquerque A, Inouye SK (2015) The interface between delirium and dementia in elderly adults. Lancet Neurol 14(8):823–832. doi:10.1016/S1474-4422(15)00101-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gleason LJ, Schmitt EM, Kosar CM, Tabloski P, Saczynski JS, Robinson T et al (2015) Effect of delirium and other major complications on outcomes after elective surgery in older adults. JAMA Surg 150(12):1134–1140. doi:10.1001/jamasurg.2015.2606

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kratz T, Diefenbacher A (2016) Acute and long-term cognitive consequences of treatment on intensive care units. Nervenarzt 87(3):246–252. doi:10.1007/s00115-016-0078-0

    Article  CAS  PubMed  Google Scholar 

  8. Davis DHJ, Muniz Terrera G, Keage H, Rahkonen T, Oinas M, Matthews FE et al (2012) Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain 135(9):2809–2816. doi:10.1093/brain/aws190

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weinrebe W, Johannsdottir E, Karaman M, Füsgen I (2016) What does delirium cost? An economic evaluation of hyperactive delirium. Z Gerontol Geriatr 49(1):52–58. doi:10.1007/s00391-015-0871-6

    Article  CAS  PubMed  Google Scholar 

  10. Kratz T, Heinrich M, Diefenbacher A (2015) Preventing postoperative delirium. Dtsch Arztebl Int 112(17):289–296. doi:10.3238/arztebl.2015.0289

    PubMed  PubMed Central  Google Scholar 

  11. Raschke MJ, Stange R, Kosters C (2012) Treatment of periprosthetic and peri-implant fractures: modern plate osteosynthesis procedures. Unfallchirurg 115:1009–1021

    Article  CAS  PubMed  Google Scholar 

  12. Wahnert D, Schliemann B, Raschke MJ et al (2014) Treatment of periprosthetic fractures: new concepts in operative treatment. Orthopäde 43:306–313

    Article  CAS  PubMed  Google Scholar 

  13. Erhart S, Zegg M, Kralinger F et al (2015) Fast and easy preoperative estimation of cancellous bone mineral density in patients with proximal femur fractures. Arch Orthop Trauma Surg 135:1683–1689

    Article  CAS  PubMed  Google Scholar 

  14. Krappinger D, Bizzotto N, Riedmann S et al (2011) Predicting failure after surgical fixation of proximal humerus fractures. Injury 42:1283–1288

    Article  PubMed  Google Scholar 

  15. Kammerlander C, Neuerburg C, Verlaan JJ et al (2016) The use of augmentation techniques in osteoporotic fracture fixation. Injury 47(Suppl 2):S36–S43

    Article  PubMed  Google Scholar 

  16. Windolf M (2015) Biomechanics of implant augmentation. Unfallchirurg 118:765–771

    Article  CAS  PubMed  Google Scholar 

  17. Kammerlander C, Doshi H, Gebhard F et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134:343–349

    Article  CAS  PubMed  Google Scholar 

  18. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial. Injury 42:1484–1490

    Article  CAS  PubMed  Google Scholar 

  19. Roderer G, Scola A, Schmolz W et al (2013) Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 44:1327–1332

    Article  PubMed  Google Scholar 

  20. Scola A, Gebhard F, Roderer G (2015) Augmentation technique on the proximal humerus. Unfallchirurg 118:749–754

    Article  CAS  PubMed  Google Scholar 

  21. Grüneweller N, Raschke MJ, Zderic I et al (2016) Biomechanical comparison of augmented versus non-augmented sacroiliac screws in a novel hemi-pelvis test model. J Orthop Res. doi:10.1002/jor.23401

    Google Scholar 

  22. Gruneweller N, Wahnert D, Raschke MJ et al (2015) Implant augmentation in pelvic surgery. Options and technique. Unfallchirurg 118:831–837

    Article  CAS  PubMed  Google Scholar 

  23. Wahnert D, Raschke MJ, Fuchs T (2013) Cement augmentation of the navigated iliosacral screw in the treatment of insufficiency fractures of the sacrum: a new method using modified implants. Int Orthop 37:1147–1150

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blazejak M, Hofmann-Fliri L, Buchler L et al (2013) In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury 44:1321–1326

    Article  PubMed  Google Scholar 

  25. Boner V, Kuhn P, Mendel T et al (2009) Temperature evaluation during PMMA screw augmentation in osteoporotic bone – an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 90:842–848

    Article  PubMed  Google Scholar 

  26. Fliri L, Lenz M, Boger A et al (2012) Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 72:1098–1101

    Article  PubMed  Google Scholar 

  27. Culemann U, Oestern HJ, Pohlemann T (2014) Current treatment of pelvic ring fractures. Unfallchirurg 117:145–141

    Article  CAS  PubMed  Google Scholar 

  28. Daurka JS, Pastides PS, Lewis A et al (2014) Acetabular fractures in patients aged >55 years: a systematic review of the literature. Bone Joint J 96-B:157–163

    Article  CAS  PubMed  Google Scholar 

  29. Fuchs T, Rottbeck U, Hofbauer V et al (2011) Pelvic ring fractures in the elderly. Underestimated osteoporotic fracture. Unfallchirurg 114:663–670

    Article  CAS  PubMed  Google Scholar 

  30. Lyders EM, Whitlow CT, Baker MD et al (2010) Imaging and treatment of sacral insufficiency fractures. AJNR Am J Neuroradiol 31:201–210

    Article  CAS  PubMed  Google Scholar 

  31. Mears SC, Berry DJ (2011) Outcomes of displaced and nondisplaced pelvic and sacral fractures in elderly adults. J Am Geriatr Soc 59:1309–1312

    Article  PubMed  Google Scholar 

  32. Morris RO, Sonibare A, Green DJ et al (2000) Closed pelvic fractures: characteristics and outcomes in older patients admitted to medical and geriatric wards. Postgrad Med J 76:646–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Elia G, Roselli G, Cavalli L et al (2010) Severe osteoporosis: diagnosis of non-hip non-vertebral (NHNV) fractures. Clin Cases Miner Bone Metab 7:85–90

    PubMed  PubMed Central  Google Scholar 

  34. Warriner AH, Patkar NM, Curtis JR et al (2011) Which fractures are most attributable to osteoporosis? J Clin Epidemiol 64:46–53

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gupta AK, Harris JD, Erickson BJ et al (2015) Surgical management of complex proximal humerus fractures-a systematic review of 92 studies including 4500 patients. J Orthop Trauma 29:54–59

    Article  PubMed  Google Scholar 

  36. Brunner F, Sommer C, Bahrs C et al (2009) Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 23:163–172

    Article  PubMed  Google Scholar 

  37. Konigshausen M, Kubler L, Godry H et al (2012) Clinical outcome and complications using a polyaxial locking plate in the treatment of displaced proximal humerus fractures. A reliable system? Injury 43:223–231

    Article  CAS  PubMed  Google Scholar 

  38. Schliemann B, Siemoneit J, Theisen C et al (2012) Complex fractures of the proximal humerus in the elderly – outcome and complications after locking plate fixation. Musculoskelet Surg 96(Suppl 1):S3–S11

    Article  PubMed  Google Scholar 

  39. Sproul RC, Iyengar JJ, Devcic Z et al (2011) A systematic review of locking plate fixation of proximal humerus fractures. Injury 42:408–413

    Article  PubMed  Google Scholar 

  40. Gardner MJ, Weil Y, Barker JU et al (2007) The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 21:185–191

    Article  PubMed  Google Scholar 

  41. Krappinger D, Roth T, Gschwentner M et al (2012) Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data. Skeletal Radiol 41:299–304

    Article  PubMed  Google Scholar 

  42. Schliemann B, Wahnert D, Theisen C et al (2015) How to enhance the stability of locking plate fixation of proximal humerus fractures? An overview of current biomechanical and clinical data. Injury 46:1207–1214

    Article  PubMed  Google Scholar 

  43. Schliemann B, Seifert R, Rosslenbroich SB et al (2015) Screw augmentation reduces motion at the bone-implant interface: a biomechanical study of locking plate fixation of proximal humeral fractures. J Shoulder Elbow Surg 24:1968–1973

    Article  PubMed  Google Scholar 

  44. Grass R, Biewener A, Rammelt S et al (2002) Retrograde locking nail osteosynthesis of distal femoral fractures with the distal femoral nail (DFN). Unfallchirurg 105:298–314

    Article  CAS  PubMed  Google Scholar 

  45. Rosen AL, Strauss E (2004) Primary total knee arthroplasty for complex distal femur fractures in elderly patients. Clin Orthop Relat Res 425:101–105

    Article  Google Scholar 

  46. Nieves JW, Bilezikian JP, Lane JM et al (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21:399–408

    Article  CAS  PubMed  Google Scholar 

  47. Hou Z, Bowen TR, Irgit K et al (2012) Locked plating of periprosthetic femur fractures above total knee arthroplasty. J Orthop Trauma 26:427–432

    Article  PubMed  Google Scholar 

  48. Vallier HA, Hennessey TA, Sontich JK et al (2006) Failure of LCP condylar plate fixation in the distal part of the femur. A report of six cases. J Bone Joint Surg Am 88:846–853

    PubMed  Google Scholar 

  49. Wahnert D, Lange JH, Schulze M et al (2013) The potential of implant augmentation in the treatment of osteoporotic distal femur fractures: a biomechanical study. Injury 44:808–812

    Article  CAS  PubMed  Google Scholar 

  50. Wahnert D, Lange JH, Schulze M et al (2013) A laboratory investigation to assess the influence of cement augmentation of screw and plate fixation in a simulation of distal femoral fracture of osteoporotic and non-osteoporotic bone. Bone Joint J 95-B:1406–1409

    Article  CAS  PubMed  Google Scholar 

  51. Wahnert D, Hofmann-Fliri L, Richards RG et al (2014) Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones. Medicine (Baltimore) 93:e166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Raschke.

Ethics declarations

Interessenkonflikt

D. Wähnert, A. Roos, J. Glasbrenner, K. Ilting-Reuke, P. Ohrmann, G. Hempel, T. Duning, N. Roeder und M.J. Raschke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

D. Wähnert und A. Roos haben zu gleichen Teilen zu der Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wähnert, D., Roos, A., Glasbrenner, J. et al. Alterstraumatologie. Chirurg 88, 95–104 (2017). https://doi.org/10.1007/s00104-016-0339-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-016-0339-2

Schlüsselwörter

Keywords

Navigation