Skip to main content

Advertisement

Log in

All Patient Refined-Diagnosis Related Groups’ (APR-DRGs) Severity of Illness and Risk of Mortality as predictors of in-hospital mortality

  • Health Policy
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aims of this study were to assess All-Patient Refined Diagnosis-Related Groups’ (APR-DRG) Severity of Illness (SOI) and Risk of Mortality (ROM) as predictors of in-hospital mortality, comparing with Charlson Comorbidity Index (CCI) and Elixhauser Comorbidity Index (ECI) scores. We performed a retrospective observational study using mainland Portuguese public hospitalizations of adult patients from 2011 to 2016. Model discrimination (C-statistic/ area under the curve) and goodness-of-fit (R-squared) were calculated. Our results comprised 4,176,142 hospitalizations with 5.9% in-hospital deaths. Compared to the CCI and ECI models, the model considering SOI, age and sex showed a statistically significantly higher discrimination in 49.6% (132 out of 266) of APR-DRGs, while in the model with ROM that happened in 33.5% of APR-DRGs. Between these two models, SOI was the best performer for nearly 20% of APR-DRGs. Some particular APR-DRGs have showed good discrimination (e.g. related to burns, viral meningitis or specific transplants). In conclusion, SOI or ROM, combined with age and sex, perform better than more widely used comorbidity indices. Despite ROM being the only score specifically designed for in-hospital mortality prediction, SOI performed better. These findings can be helpful for hospital or organizational models benchmarking or epidemiological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Minne L, Ludikhuize J, de Rooij SE, Abu-Hanna A. Characterizing predictive models of mortality for older adults and their validation for use in clinical practice. J Am Geriatr Soc. 2011 Jun;59(6):1110-5.

    Article  Google Scholar 

  2. Larsson J, Itenov TS, Bestle MH. Risk prediction models for mortality in patients with ventilator-associated pneumonia: A systematic review and meta-analysis. J Crit Care. 2017 Feb;37:112-118.

    Article  Google Scholar 

  3. Sharma, N., Schwendimann, R., Endrich, O., Ausserhofer, D., & Simon, M. (2021). Comparing Charlson and Elixhauser comorbidity indices with different weightings to predict in-hospital mortality: an analysis of national inpatient data. BMC health services research, 21(1), 13.

    Article  Google Scholar 

  4. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40: 373–383.

    Article  CAS  Google Scholar 

  5. Elixhauser A, Steiner C, Robert Harris D, Coffey RM. Comorbidity measures for use with administrative data. Med Care 1998; 36: 8–27.

    Article  CAS  Google Scholar 

  6. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005; 43: 1130–1139.

    Article  Google Scholar 

  7. Quan H, Bing L, Couris CM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 2011; 173: 676–682.

    Article  Google Scholar 

  8. van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care 2009; 47: 626–633.

    Article  Google Scholar 

  9. Moore BJ, White S, Washington R, Coenen N, Elixhauser A. Identifying increased risk of readmission and in-hospital mortality using hospital administrative data. Med Care 2017; 55: 698–705.

    Article  Google Scholar 

  10. Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv Res. 2003; 38(4):1103–1120.

    Article  Google Scholar 

  11. Thompson NR, Fan Y, Dalton JE, Jehi L, Rosenbaum BP, Vadera S, Griffith SD. A new Elixhauser-based comorbidity summary measure to predict in-hospital mortality. Med Care. 2015; 53(4):374–379.

    Article  Google Scholar 

  12. Fetter RB, Thompson JD, Mills RE. A system for cost and reimbursement control in hospitals. Yale J Biol Med 1976; 49: 123–136.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Busse R, Geissler A, Quentin W, et al. Diagnosis Related Groups in Europe. Moving towards Transparency, Efficiency and Quality in Hospitals. Copenhagen: Open University Press. 2011.

  14. Schreyogg J, Stargardt T, Tiemann O, Busse R. Methods to determine reimbursement rates for diagnosis related groups (DRG): a comparison of nine European countries. Health Care Management Sci 2006; 9(3): 215–223.

    Article  Google Scholar 

  15. Mathauer I, Wittenbecher F. Hospital payment systems based on diagnosis-related groups: Experiences in low- and middle-income countries. Bull World Health Organ 2013; 91: 746–756.

    Article  Google Scholar 

  16. Mihailovic, N., Kocic, S., & Jakovljevic, M. Review of Diagnosis-Related Group-Based Financing of Hospital Care. Health services research and managerial epidemiology, 3, 2333392816647892. 2016.

    Article  Google Scholar 

  17. Averill R, Goldfield N, et al. All Patient Refined Diagnosis Related Groups (APR-DRGs) Version 31.0: Methodology Overview [Internet]. Available from: https://hcup-us.ahrq.gov/db/nation/nis/grp031_aprdrg_meth_ovrview.pdf [Accessed in Jun 15 2021].

  18. Dewilde, S, Annemans, L, Pincé, H, Thijs, V. Hospital financing of ischemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness. BMC Health Serv Res. 2018; 18(1): 356.

    Article  Google Scholar 

  19. Nante N, De Marco MF, Balzi D, Addari P, Buiatti E. Prediction of mortality for congestive heart failure patients: results from different wards of an Italian teaching hospital. Eur J Epidemiol. 2000; 16: 1017–21.

    Article  CAS  Google Scholar 

  20. Iezzoni LI, Shwartz M, Ash AS, Mackiernan YD. Predicting in-hospital mortality for stroke patients: results differ across severity-measurement methods. Med Decis Making. 1996; 16(4): 348–356.

  21. Baram D, Daroowalla F, Garcia R, Zhang G, Chen JJ, Healy E, Riaz SA, Richman P. Use of the All Patient Refined-Diagnosis Related Group (APR-DRG) Risk of Mortality Score as a Severity Adjustor in the Medical ICU. Clin Med Circ Respirat Pulm Med. 2008; 2: 19–25.

    Google Scholar 

  22. McCormick PJ, Lin HM, Deiner SG, Levin MA. Validation of the All Patient Refined Diagnosis Related Group (APR-DRG) Risk of Mortality and Severity of Illness Modifiers as a Measure of Perioperative Risk. J Med Syst. 2018; 42(5): 81.

    Article  Google Scholar 

  23. Romano PS, Chan BK. Risk-adjusting acute myocardial infarction mortality: are APR-DRGs the right tool? Health Serv Res. 2000 Mar;34(7):1469–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu J, Larson E, Hessels A, Cohen B, Zachariah P, Caplan D, Shang J. Comparison of Measures to Predict Mortality and Length of Stay in Hospitalized Patients. Nurs Res. 2019; 68(3): 200–209.

  25. DiCiccio TJ and Efron B. Bootstrap Confidence Intervals. Statistical Science 1996; 11: 189.

    Article  Google Scholar 

  26. Souza J, Santos JV, Canedo VB, Betanzos A, Alves D, Freitas A. Importance of coding co-morbidities for APR-DRG assignment: Focus on cardiovascular and respiratory diseases. Health Inf Manag 2020; 49: 47–57.

    PubMed  Google Scholar 

  27. Bahlis LF, Diogo LP, Fuchs SC. Charlson Comorbidity Index and other predictors of in-hospital mortality among adults with community-acquired pneumonia. J Bras Pneumol. 2021; 47(1): e20200257.

  28. Christensen S, Johansen MB, Christiansen CF, Jensen R, Lemeshow S. Comparison of Charlson comorbidity index with SAPS and APACHE scores for prediction of mortality following intensive care. Clin Epidemiol. 2011; 3: 203–211.

    Article  Google Scholar 

  29. Quach S, Hennessy DA, Faris P, Fong A, Quan H, Doig C. A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res. 2009; 9: 129.

    Article  Google Scholar 

  30. Bennett CE, Wright RS, Jentzer J, Gajic O, Murphree DH, Murphy JG, Mankad SV, Wiley BM, Bell MR, Barsness GW. Severity of illness assessment with application of the APACHE IV predicted mortality and outcome trends analysis in an academic cardiac intensive care unit. J Crit Care. 2019; 50: 242–246.

    Article  Google Scholar 

  31. Wang H, Johnson C, Robinson RD, Nejtek VA, Schrader CD, Leuck J, Umejiego J, Trop A, Delaney KA, Zenarosa NR. Roles of disease severity and post-discharge outpatient visits as predictors of hospital readmissions. BMC Health Serv Res. 2016; 16(1): 564.

    Article  Google Scholar 

  32. Jokinen JJ. Why do we have to predict mortality rates? Acta Anaesthesiol Scand. 2011; 55(3): 255–256.

    Article  CAS  Google Scholar 

  33. Mascha EJ, Mazo V. Predicting In-hospital Postoperative Mortality for the Practitioner: Beyond the Numbers. Anesthesiology. 2016; 124(3): 523–525.

    Article  Google Scholar 

  34. El Amrani M, Clement G, Lenne X, Rogosnitzky M, Theis D, Pruvot FR, Zerbib P. The Impact of Hospital Volume and Charlson Score on Postoperative Mortality of Proctectomy for Rectal Cancer: A Nationwide Study of 45,569 Patients. Ann Surg. 2018; 268(5): 854–860.

    Article  Google Scholar 

  35. Jarman B, Pieter D, van der Veen AA, Kool RB, Aylin P, Bottle A, Westert GP, Jones S. The hospital standardised mortality ratio: a powerful tool for Dutch hospitals to assess their quality of care? Qual Saf Health Care. 2010; 19(1): 9–13.

    Article  CAS  Google Scholar 

  36. Bhandari S, Abdul MKM, Hollabaugh W, Sharma K, Evans DB, Guda N. Decreased trend in hospital mortality from pancreatic cancer despite increase in number of hospital admissions. PLoS One. 2018; 13(7): e0199909.

  37. Stavem K, Hoel H, Skjaker SA, Haagensen R. Charlson comorbidity index derived from chart review or administrative data: agreement and prediction of mortality in intensive care patients. Clin Epidemiol. 2017; 9: 311–320.

    Article  Google Scholar 

  38. Weir RE Jr, Lyttle CS, Meltzer DO, Dong TS, Ruhnke GW. The Relative Ability of Comorbidity Ascertainment Methodologies to Predict In-Hospital Mortality Among Hospitalized Community-acquired Pneumonia Patients. Med Care. 2018; 56(11): 950–955.

    Article  Google Scholar 

  39. Peng M, Southern DA, Williamson T, Quan H. Under-coding of secondary conditions in coded hospital health data: Impact of co-existing conditions, death status and number of codes in a record. Health Informatics J. 2017; 23(4): 260–267.

    Article  Google Scholar 

  40. Ramalho A., Souza J., Freitas A. The Use of Artificial Intelligence for Clinical Coding Automation: A Bibliometric Analysis. In: Dong Y., Herrera-Viedma E., Matsui K., Omatsu S., González Briones A., Rodríguez González S. (eds) Distributed Computing and Artificial Intelligence, 17th International Conference. DCAI 2020. Advances in Intelligent Systems and Computing, vol 1237. Springer, Cham. 2021.

  41. Stanfill MH, Williams M, Fenton SH, Jenders RA, Hersh WR. A systematic literature review of automated clinical coding and classification systems. J Am Med Inform Assoc. 2010; 17(6): 646–651.

  42. Catling F, Spithourakis GP, Riedel S. Towards automated clinical coding. Int J Med Inform. 2018; 120: 50–61.

    Article  Google Scholar 

  43. Mpanya D, Celik T, Klug E, Ntsinjana H. Machine learning and statistical methods for predicting mortality in heart failure. Heart Fail Rev. 2021 May;26(3):545-552. https://doi.org/10.1007/s10741-020-10052-y. Epub 2020 Nov 9. PMID: 33169338.

    Article  PubMed  Google Scholar 

  44. Weissman GE, Hubbard RA, Ungar LH, Harhay MO, Greene CS, Himes BE, Halpern SD. Inclusion of Unstructured Clinical Text Improves Early Prediction of Death or Prolonged ICU Stay. Crit Care Med. 2018; 46(7): 1125–1132.

    Article  Google Scholar 

  45. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A, Tansuwan J, Wang D, Wexler J, Wilson J, Ludwig D, Volchenboum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui C, Corrado GS, Dean J. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018; 1: 18.

    Article  Google Scholar 

  46. Syed M, Syed S, Sexton K, Greer ML, Zozus M, Bhattacharyya S, Syed F, Prior F. Deep Learning Methods to Predict Mortality in COVID-19 Patients: A Rapid Scoping Review. Stud Health Technol Inform. 2021; 281: 799–803.

    Google Scholar 

  47. Alonso V, Santos JV, Pinto M, Ferreira J, Lema I, Lopes F, Freitas A. Health records as the basis of clinical coding: Is the quality adequate? A qualitative study of medical coders' perceptions. Health Inf Manag. 2020; 49(1): 28–37.

    PubMed  Google Scholar 

  48. Santos JV, Novo R, Souza J, Lopes F, Freitas A. Transition from ICD-9-CM to ICD-10-CM/PCS in Portugal: An heterogeneous implementation with potential data implications. Health Inf Manag. 2021 [epub ahead of print].

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Vasco Santos.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Health Policy

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.V., Viana, J., Pinto, C. et al. All Patient Refined-Diagnosis Related Groups’ (APR-DRGs) Severity of Illness and Risk of Mortality as predictors of in-hospital mortality. J Med Syst 46, 37 (2022). https://doi.org/10.1007/s10916-022-01805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-022-01805-3

Keywords

Navigation